Int. J. Solids Structures Vol. 29, No. 21, pp. 2623-2638, 1992 0020-7683 92 $500~ 00
Printed in Grest Britwa. ¢ 1992 Pergamon Press Ltd

SELF-CONSISTENT CONSTITUTIVE MODELING
AND TESTING OF POLYCRYSTALLINE HASTELLOY-X

SHIXIANG SHi and ErIC H. JORDAN
University of Connecticut, Storrs, CT 06268, U.S.A.

and

KeviN P. WALKER
Engineering Science Software Inc., Smithfield, RI1 02917, U.S.A.

(Received 16 December 1991 ; in revised form 3 March 1992)

Abstract—A viscoplastic constitutive model is presented for the estimation of the overall mechanical
response of Hastelloy-X polycrystalline metal from a knowledge of the single crystal behavior. The
deformation behavior of the polycrystal is derived from that of single crystals by using a self-
consistent method. The single crystal behavior is developed by summing postulated slip on cry-
stallographic slip systems. Plasticity and crecp are modeled using a unified viscoplastic model which
includes the interaction effects between rapid and slow deformation at clevated temperature. The
validity of the model is directly tested by critical experiments on Hastelloy-X in both the single
crystal and polycrystalline versions.

1. INTRODUCTION

Real polycrystalline metals consist of large numbers of randomly orientated single crystal
grains. Dircet modecling of an array of grains large cnough to give a representative behavior
of the polycrystal is currently infeasible. Such an array would comprise a three-dimensional,
inhomogeneous, nonlincar model with many degrees of freedom. Accordingly an ideal-
ization must be made and here we use the sclf-consistent idealization [see, for example,
Hutchinson (1976), Berveiller and Zaoui (1984), Kratochvil and Tokuda (1984), Bretheau
et al. (1984), Chiang and Weng (1984), Duva (1984) and Nemat-Nasser and Obata (1986)).
In this idealization the behavior of a single spherical crystal grain embedded in an effective
isotropic medium is found using Eshelby’s solution (1957). The properties of the effective
medium are derived from averaging the behavior of embedded grains of representative
orientations. A unified viscoplastic single crystal formulation (Jordan er al., 1992) is
used to describe the behavior of each grain with a representative orientation at elevated
temperature. Since the properties of the effective medium depend on the average behavior
of the grain, as constrained by the effective medium, the idealization results in implicit
equations. However, in the inclastic problem an incremental solution must be used and
these incremental equations turn out to be explicit provided an Euler forward difference
solution scheme is used. To directly verify the validity of the model, critical experiments
were performed on both the single crystal and polycrystalline versions of the same material
at elevated temperature. This strategy tests the self-consistent method in a way that is least
intertwined with the adequacy of the single crystal model.

The goal of the present work is to predict the viscoplastic behavior of a polycrystalline
metal beginning with a formulation at the crystallographic slip level and then to quan-
titatively test these predictions. The formulation herein is based on a small strain assumption
and accordingly no rotational effects in the microstructure are considered. In addition, no
provision is made to account for grain boundary sliding effects between the crystalline
grains. In order to quantitatively test such a model it is necessary to run tests on both the
single crystal and the polycrystal versions of the samc alloy and ensure that the single crystal
samples have properties which closely match those of the single crystal grains in the
polycrystal sample. There are formidable difficulties in running such tests. First, it is
necessary to obtain macroscopic single crystal samples and either test several orientations
or else test the sample using several different stress states. Second, it is necessary to ensure
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that the single crystal specimens have properties which closely match those of the single
crystal grains in the polycrystal sample. Finally, it is necessary to construct a suitable
constitutive model for the highly anisotropic single crystal and verify its predictions at
the single crystal level. Because of these difticulties critical experiments have rarely been
performed.

In this investigation large single crystal sumples were made using procedures developed
for making single crystal turbine blades at Pratt & Whitney. A single orientation [001] set
of specimens was made and tested in tension-torsion to obtain information about the
anisotropy. The alloy chosen (Hastelloy-X) is a single phase gamma nickel base alloy that
is solution strengthened by very fine carbides. The primary determinant of strength is
the carbon saturation. Both the single crystal and polycrystal samples were heat treated
simultaneously in an attempt to equalize the carbon saturation between the single and
polycrystal samples and therefore give them identical properties. The final problem of
modeling the anisotropic behavior of the single crystal was solved using a slip based
viscoplastic constitutive model in which the anisotropy is predicted from information
about the slip geometry. The development and veritication of such a model is of sufficient
complexity that it has been described in a separate paper (Jordan er al.. 1992). Here we
will summarize the single crystal model, present the self-consistent polycrystalline model,
and show the comparison between the sclf-consistent model and the polycrystalline exper-
iments to test the theory.

2. CRITICAL EXPERIMENTS

The experimental sct-up used in this work has been described clsewhere in detail
(Jordan and Chan, 1987). Here we briclly summarize the relevant features. A high ductility,
single phase, solution strengthened atrcraft engine alloy, Hastelloy-X, was chosen for
both the single crystal version and the polycrystalline version because of its simple phase
composition, and particularly because of its availability in large single crystal form. This
material is a nickel base alloy which has refatively low strength but high ductility at elevated
temperatures. The chemical composition of the Hastelloy-X is given in Table 1. Both the
single crystal and polycrystalline material were subjected to an identical pretesting heat
treatment at a temperature of 1204°C for | hr. The specimen geometry used was identical
for both the single crystal and the polycrystal. The gage section was a thin walled tube with
a mean diameter of 16.5 mm and a wall thickness of 1.27 mm.

All the elevated temperature tests conducted for this work were performed on a
computer controlled tension-torsion servo-hydraulic testing machine designed and built at
the University of Connecticut (Jordan and Chan, 1987). Axial stress was calculated by
dividing the load by the area whilst torsional shear stress was calculated using the formulae
for a thin walled tube, assuming a uniform distribution through the wall. Strain was
measured using an extensometer which is a variant of that developed by Liu (1983). This
extensometer has less than 0.5% cross talk. The sumples were heated using an audio
frequency induction heater controlled by gage section temperatures measured using an
infrared pyrometer. The temperature was further checked using an optical match wire
pyrometer with thermocouples welded just outside the gage section.

In both the tests required to develop the single crystal model and the tests to explore
the polycrystal propertics, a wide range of different test conditions were conducted at
982°C. A fortuitous feature of the material response is the minimal cyclic hardening at this
temperature. [n addition, the samples showed no persistent deformation history effects in

Table 1. Hastelloy-X chemical composition

Element C Cr Co Mo w Fe Mn Si p S Ni
Percent weight 0.10 22.0 1.50 9.00 0.60 18.50 1.00 100 004 003 bal
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the sense that after the imposition of a variety of relaxation and cyclic tests, a few loading
cycles returned the specimen back to the same response for any particular type of loading.
It was therefore possible to run a variety of strain histories on a single specimen. To verify
that the sample did not change state during the tests, the response of the sample to an
intermediate strain rate cycle of simple tension was checked after a certain test sequence to
ensure that no long term state changes were occurring.

Tests were conducted at three different strain rates, viz, 1072, 10~* and 1077 s
for tension—compression, pure torsion, in-phase tension-torsion, as well as out-of-phase
tension—torsion loadings. It is noteworthy that at 982°C almost no additional cyclic hard-
ening occurred due to nonproportional straining as has often been observed in other
materials {(Lamba and Sidebottom, 1978 ; McDowell, 1985). Tests were conducted in which
relaxation strain holds were imposed at various strain points around a steady-state hysteresis
loop executed at a constant strain rate. In addition, tests in which the strain rate was
suddenly changed by a factor of 10 or 20 were conducted. These tests provide a broad test
of the predictive capabilities of the proposed self-consistent model and specific results will
be presented later in the paper.

3. COORDINATE SYSTEMS

In order to describe the proposed model, it is necessary to designate three coordinate
systems and their associated unit basis vectors. The coordinate systems used are shown in
Fig. 1. In general. it is convenient to locate a coordinate system such that one axis coincides
with the specimen axis. This coordinate system will be referred to as the global coordinate
system and has axes x, y,z with unit vectors i.j, k. It is also convenient to locate the
crystallographic coordinate system with axes aligned along the edges of a unit cell in the
FCC structure. This coordinate system will be referred to as the x*, y*, z* system with unit
vectorsi*, j*. k*. Finally, convenient coordinate systems in which to describe the constitutive
behavior of individual slip systems are those with one axis on the slip planc in the slip
direction whose associated unit vector is m, with a sccond axis normal to the slip plane
whose associated unit vector is denoted by n, and a third axis in the slip plane, normal to
the slip direction, having an associated unit vector z = m x n. The stress tensor in the global
system x, y, z will be denoted by o,, and the stress tensor in the crystallographic system
x*, y*.z* by a. If Q,, denotes the orthogonal tensor which rotates the crystallographic
(starred) axes into the global (unstarred) axes, viz. x; = Q;,x/, then the stress and strain
rate tensors in the crystallographic system may be obtained from the stress and strain rate
tensors in the global system from the usual transformation relations

o} = QuouQ; and (éf/.oé:}') = Q/(l(é/(T/‘é:l)QI)* n
z
]
» 7
7 ¢
----------------- T et \
. . y
B
x

Fig. |. Relation between the global axes x, v, = and the crystallographic axes x*, 1%, z*.
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where the matrix Q,; is given, in terms of the appropriate Euler angles in Fig. 1. by

cosncos fcosp—sin fsin¢g —cosncosfsing—sinfcos¢d sinncosf
(Q,,) = |cosnsinfcosd+cos fsingp —cosnsinfsing-+cosBcosed sinngsinf
—sin n cos ¢ sin 7 sin ¢ cosn

(2)

and the superscripts T and P on ¢, denote the total and plastic components, respectively.

4. THE SINGLE CRYSTAL CONSTITUTIVE FORMULATION

The rate-dependent constitutive behavior of the single crystal is represented by a unified
viscoplastic formulation based on crystallographic slip theory. This viscoplastic single
crystal relation for Hastelloy-X at elevated temperature has been recently developed by
Jordan et al. (1992) and is a modification of the model developed by Walker and Jordan
(1985, 1992). A basic assumption of the formulation is that the component of stress
responsible for the shear deformation on a given slip system is the resolved shear stress on
the slip plane and in the slip direction. The behavior of the single crystal is derived from a
viscoplastic constitutive relation which is assumed to give the slip behavior of each individual
slip system. [n this formulation, creep and plastic strains are represented as a single inclastic
strain (hence the term unified) and the effects of deformation history are accounted for by
state variables that evolve according to their own differential evolution equations. The
formulation, as applicd to cach Schmid shear stress component in the octahedral slip system,
ts summarized by the following equations:

no=mlae*n], r=12...,12, (3)
-l -
V= K ( k‘,’w>' r=12...,12, H
a; =057 — S lwl =Sl 1P el e = 12,0012, (5)
K = ‘Z By + (N ~q0)0u] = Balgr + (1= g2)0u] (KT =KD r=12,...,12, (6)

ko~ 1

where n, p, 0%, 0%, 05. B1. B2, q.. 4., K7 are temperature dependent octahedral material
constants with K¢ being the initial value of each slip system drag stress; n7 is the Schmid
stress on the octahedral plane of the rth system; 77 is the shear strain rate due to slip on
the rth octahedral slip system; «f, K are the octahedral back stress and drag stress state
variables in the rth octahedral slip system; and d,, is the Kronecker delta tensor. The
constants ¢, and ¢, are connected with latent hardening interaction effects between the slip
systems in which slip on intersecting systems influences the behavior on the slip systems of
interest. The formulation for cube slip systems is represented in an analogous manner except
the drag stress is assumed to be constant. The equations for cube slip arc given as follows:

=me*n, r=12...,6, (7

n:_wc m -1 nc_wc
¥ o= ’KC ‘ (’KC ) r=1,2.....6. (8)
@ = 0555 — 0517w — @Sl ef. r=1.2.....6, )

Ki=K5, r=12...6, (10)
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Table 2.

ms = (i* —k*)/\/2
m = (=i*+j*)/y/2
mS = (=j*+k*)//2
m} = *~k*)/y/2
mg = (—i*—j*)//2
mg = (i*+k*)//2
m3 = (—i*—k*)/ /2
m = (i*—j*)/2

m), = (j‘+k‘)/\/§
myy = (—j*~k*)/\/2
mi, = +j)/2
my; = (—i*+k*)//2

Octahedral vectors
0} = (i*+j* +k*)//3
03 = (i*+j*+k*)/\/3
o = (i*+j*+k*)/ /3
0 = (—i*+j*+k*)//3
0y = (—i*+j*+k*)i /3
0 = (—i*+j"+k*)//3
0 = (—i*—j*+k*) /3
0y = (—i"~j*+k*)/\/3
0 = (—i*—j*+k*)/3
ngy = ("= +k*)//3
o}, = (i*—j*+k*)1\/3
n; = (i —j* +k*)//3

7= (i*—2*+k*)1,/6
25 = (i*+j*-2k*)/ /6
2z = (=2i*+j* +k*)/ /6
25 = Q2i*+j*+k*)/\/6
2= (—i*+j*-2k*)/ /6
2 = (—i*-2j* +k*)//6
2 = (—i*+2j* +k*)/ /6
7y = (=i*—j*—2k*)//6
3 = (2i*—j* +k*)/ /6
Zio = (—2i*=j* +k*)/\/6
2, = (i*+j* - 2k*)//6
5= (" +2j*+k*) /6
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where m, q. 0f. ¢5. ¢5. K5 are temperature dependent cube material constants; #} is the
Schmid stress on the cube shear plane of the rth system; 7§ is the shear strain rate due to
slip on the rth cube slip system; and o is the back stress state variable in the rth cube slip
system. The vectors m°, n°, m° and n° defining the local octahedral and cube slip systems
are given in Tables 2 and 3.

In order to make the single crystal constitutive model match the strain rate dependence
of both the uniaxial and biaxial single crystal tests, it was found to be necessary to introduce
two latent hardening/softening factors, ¢, and ¢,. The introduction of the latent softening
factor, ¢,, into the dynamic recovery terms of the drag stress state variable has not been
considered in the literature herctofore, and a detailed discussion is given in Jordan et al.
(1992).

The basic formulation involving active octahedral slip on close packed planes in close
packed directions is accepted as standard for FCC single crystals. The authors were unable
to find evidence in the literature, either for or against, for cube slip in Hastelloy-X single
crystal specimens. There is, however, evidence for such slip in nickel base gamma prime
superalloys (Walker and Jordan, 1985) and the introduction of this assumption allowed
good agreement between the single crystal predictions and experiments on Hastelloy-X to
be obtained. It is clear from the single crystal predictions in the preceding reference that
octahedral slip alone does not give good predictions for single crystal specimens with their
axes oriented in the [011] or [T11] crystallographic directions. Further plastic straining from
some other quarter is indicated. This is found to be true at lower temperatures where cube
slip is generally acknowledged to be inoperative. Thus, in both the nickel base gamma prime
superalloys and the current Hastelloy-X single crystal specimens, additional slip other than
octahedral in conjunction with the octahedral slip itself is needed in order to harmonize the
calculations with the experimental results. In default of metallurgical evidence, we have
assumed that this extra plastic deformation is due to slip on the cube systems in the FCC
structure, and we have made the simplest assumption that the drag stress in the cube system
is constant and that no interaction occurs between the octahedral and cube slip systems.

Table 3

Cube vectors
mi = (i*+1*)//2 o =k
mi = (=42 ni=k
m; = (i* +k*)//2 o = j*
m = (—i*+k*) /2 m =
m; = (* +k*)//2 o =i*
mi= (= +k*)/2 =it

7 = (°=§*)//2
% = (1"+J°) /2
5 = (~i*+k*) /2
5 = (~i*=k*)/\/2
% = (*~k*)/\/2
7 = (" +k*)//2

sas 29-21-C
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5. CRYSTAL DEFORMATION BY SUMMATION OF SLIP ON INDIVIDUAL SLIP SYSTEMS

The overall deformation of the crystal is determined by summing the deformation on
the 12 octahedral and six cube slip systems. In summing up the slip from the various slip
systems, a knowledge of the slip geometry determined by material scientists is used, in
combination with appropriate tensor transformations, to get the overall inelastic strain rate
in the crystallographic axes. In each of the {8 mn type directions the shear strain rates are
governed by the relations described in the preceding section. The inelastic strain rate tensor
in each slip system. (m;, n}, 7). where x = o or c, is then of the form

érxnm ‘grx’m ér’n: G % ir 0
bm G =[4H7 0 0
€, £, EL 0 0 0

These 18 tensors are then rotated into the common crystallographic system (i*,j* k*)
and summed according to the relation,

12
& = X HG* ey (m )+ (% md) ()L

r=1

+ 3 M nd (my - )+ m (g ] (1D

e d

to get the overall inclastic strain rate, &), of the crystal in the crystallographic axes x*, y*, z*.
The stress rate tensor with respect to the erystallographic axes is then determined from
Hooke's law according to the relationship

P

al = D,c,/‘/(’fkli. — L )"f’l)f;u(f:k'; — &0 ), (12)

where Dy, is the anisotropic clasticity tensor for the fuce-centered cubic crystal referred to
the crystallographic axes x*, y*, z*. The stress rate and the strain rates in the global system
are then obtained from the inverse of eqn (1), viz.

61/(’?‘ /;* ¢) = Q:kd'/:/Q,l Z‘nd (b:zl; (’I" I[;' (b)'t‘f)/ ("'/;' (/))) = Q:k(é[l.-éfl‘)ij' (13)

The last term in eqn (12) is zero under the isothermal conditions considered in this paper.

6. DETERMINATION OF THE MATERIAL CONSTANTS

The proposed equations governing the single crystal behavior contain material con-
stants that must be determined from experiments on single crystal specimens. Because of
the nature of the equations these constants cannot be readily determined from slopes or
other attributes of the test data. Constants were determined by means of a Levenberg-
Marquardt nonlinear least squares approach (Press et al., 1986) which adjusts the constants
to minimize the square of the sum of the stress difference between the experimental data
and the model predictions. It is possibie to determine the octahedral material constants
independently of the cube material constants by using data from [001] uniaxial tension-
compression tests, because in [001] tension-compression tests the resolved shear stresses on
all the cube planes are zero. The cube material constants may then be determined from
[001] torsion data once the octahedral material constants are known. The constants for the
octahedral slip system were determined from three [001] steady state tension-compression
hysteresis loops having a strain range of +0.3% and strain rates of 1077, 10 * and 10~ 5
s~ ', Cube slip constants were determined from three [001] steady state pure torsion hys-
teresis loops having a strain range of +0.4% and strain rates of 10 %, 10 *and 10 *s"".
The latent hardening constants g, and ¢, were determined from three sets of [001] steady
state biaxial hysteresis loops in which both the axial and torsional strain range was +0.4%.
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Table 4. Material constants for Hastelloy-X single crystal at
982 C [from Jordan et al. (1992)]

) =111.90x 10°Nm~* 0t =5864x 10" Nm-*
¢% = 1.796 x 10* ¢% = 6.093x 10°

b =0(Nm-3)~e-".s! g5 =0(Nm %) Wb g-1
n=3995 m = 4.780

p=30 qg=30

K3 =2550x10"Nm " 5" K\=2840x10*Nm~ .5
B, =58872x10°Nm~* 5"

B. = 4.731 x 10°* D%y, = 103.59x 10° Nm-*
g, =20 D5 . =5827x10°Nm-*
q: =05 DS, =8308x10°Nm-:

The material constants determined for the single crystal version of Hastelloy-X at 982°C
are shown in Table 4. After all the model constants were determined from the experimental
data, predictions for the single crystal version of Hastelloy-X were made for strain rate
sensitivity tests under various biaxial loadings, strain ratc dip tests, relaxation tests and
out-of-phase biaxial tests. These results, presented in Jordan er al. (1992), show that the
agreement between the model predictions and the experiments for Hastelloy-X single crystal
is very good.

7. SELF-CONSISTENT MODEL

If the individual crystalline grains of the polycrystalline material are assumed to be
spherical, then Eshelby's analysis (1957) shows that the stress state inside a single crystal
which is immersed in an infinite isotropic matrix is homogencous. For self-consistency we
require that the orientation average of the microscopic constitutive relation over the grain,
when constrained by the effective isotropic matrix (i.e. the polycrystal), should correspond
to the constitutive relation for the overall effective isotropic medium, i.e.

Aajy = D, B ) (Aeii(n, B. §) — Bt (n, B, ) = D (Beg — AZL)), (14)

where Ae, is the applied uniform strain increment on the polycrystal; As)) is the effective
incremental stress response of the polycrystal; D, is the effective isotropic elasticity tensor
for the polycrystal ; Ag,, is the inelastic strain increment in the polycrystal; and (n, fi, ¢) are
the Euler angles for the orientation of the crystallographic axes with respect to global axes
in the polycrystalline material as shown in Fig. 1. The tensor D, (1. 8, ¢) is the elasticity
tensor of the grain; Aej,(n, f, ¢) is the total strain increment in the grain; and Azl (1, f. @)
is the inelastic strain increment in the grain, all referred to the global coordinate system.
The orientation averaging is denoted by

l n 2z I
S p.d)) = g;;J f 0/'('7‘ B.¢)sinndndfde. (15)

w0 JAa0 Jp=

By using an integral equation approach (see the Appendix) the total strain increment
in the anisotropic spherical grain, when constrained by the isotropic effective medium
(polycrystal). is given in the global coordinate system by the relation
Ac;’rj("' /}' ¢) = [Il'/mn + Si/rfD—r7ﬁl:[(Dﬂqmn("~ /}v ¢) - D-pqmn)] -

x {Asl?lll + Smnk/(Aerl (']' B‘ ¢) - AEU) + Smnl(/D-lr—lut'(Dul'rr('l- ﬂ' ¢) - Eurr\')
x Aer(n.B. )}, (16)
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in which [, is the fourth rank identity tensor. The Eshelby tensor, S,,,. for the case of an
isotropic effective medium (polycrystal) is given by the relation

S =(1- gﬂ)éiidkl+ %ﬂ(étké,/‘i’lsu‘j/k 39 Okt)- an
where B = 2(4~5¥)/[15(1 —¥)] and ¥ = 4/[2(A+j1)] is Poisson’s ratio for the effective

medium (polycrystal). The isotropic elasticity tensor for the effective medium is given by
the relation

D-l[k/ = Zdl/(jkl+2ﬂ(6ikéll+5l/5/k)~ (18)
and the elasticity tensor of the spherical single crystal grain in the global system is given by

I[’(/('I ﬂ d)) = le(" B ¢)QN(" ﬂ ¢)le(" ﬁ ¢)Qli(” ﬂ ¢)qurn (19)

where the Q,s are tabulated in eqn (2) and values of D}, for the face centered cubic crystal
are given in Table 4. The stress increment in the grain, when referred to the global coordinate
system, is then given by the relation

Ao (0. B. d) = D,ui(n. B. $)(Acki(n. B. &) ~ Acki(n, B. §)). (20)

On introducing (16) into (14) and equating the elastic and inelastic components of the
stress increment, we obtain an implicit relation for effective elasticity tensor, D,,,, and an

{a) COMPUTED RESULTS
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(b) EXPERIMENTAL RESULTS
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Fig. 2. Hysteresis loops of a uniaxial tension-compression test for polycrystalline Hastelloy-X at
982°C. (a) Prediction of the sclf-consistent model. (b) Polycrystalline experimental resuits.
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explicit expression for effective inelastic strain increment, A&}, viz.
Dijkl = <Dijr.1("' Bv ¢)[[rskl + erqu_p—wLn(Dmnkl (’1* ﬁ' ¢) - D-mnkl)] - > (21)
and

Aé-r, = [Diqu(quu - Ipqr:)] - <Dmn:("v ﬂ- ¢)[Iurgh + S,,,.,/D‘,},,l,,,
X (Dpngn (1, B, ¢) — ﬁmnyh)] -! (Sgnes— yhkl)Aell:l('lv B.$)>. (22)

The effective elasticity tensor of the polycrystal ineqn (21) may be obtained by iteration
at the start of the calculation. Values of £ = 40.08 x 10° Nm~?and ji = 49.96 x 10° Nm~?
for the polycrystal were obtained by iterating (21) with values of D;, given in Table 4,
which may be compared with experimental values of A, =41.72x10° N m~? and
fespe = 53.16 x 10° N'm 2. The overall effective polycrystal constitutive relation in eqn (14)
is then easily computed. Suppose that the stress state, o;;(n, B, ¢), in the grain is known.
The inelastic strain increment in the grain, Aef,(1, B, ¢). can be determined from eqn (11)
by integrating the unified viscoplastic slip formulation described in the preceding section
with an explicit Euler forward difference method. The corresponding inelastic strain
increment in the effective medium of the polycrystal is obtained from eqn (22). The stress
increment in the overall effective medium (polycrystal) is then calculated from eqn (14).
Equation (20) for the stress increment in the grain, Ag,;(n, i, ¢). is then used to update the
stress state in each grain at cach sct of Euler angles (. . ¢) used in the numerical orientation
averaging scheme, in preparation for the next overall integration increment.

{a} COMPUTED RESULTS
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(b} EXPERIMENTAL RESULTS
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Fig. 3. Hysteresis loops of a pure torsion test for polycrystalline Hastelloy-X at 982°C. (a) Prediction
of the self-consistent model. (b) Polycrystalline experimental resuits.
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In the numerical work the orientation averages in eqn (15) were computed with an
8 x 8 x 8 Gaussian quadrature scheme. The accuracy was checked by comparing the results
with a more refined 12 x 12 x 12 Gaussian quadrature.

The predicted results from the self-consistent calculations show a very subtle strain
softening in the saturated portions of the hysteresis loops, even though the single crystal
constitutive model itself shows no softening in the saturated portions of the single crystal
hysteresis loops. We have. however, observed softening in the self-consistent calculations
any time the isotropic elastic moduli are not exactly self-consistent. For example, the elastic
moduli were computed witha 12 x 12 x 12 quadrature scheme at the start of the calculations.
whilst the hysteresis loops themselves were computed with an 8 x 8 x 8§ quadrature scheme.
The slight self-inconsistency thus introduced produces the slight strain softening observed
in some of the figures. e.g. (4a, 6a), in the saturated portions of the hysteresis loops.

[t should be noted from the Appendix that the method is explicit provided the inelastic
strain increment in the grain is independent of the total strain increment in the grain. This
requirement is met if the viscoplastic model is integrated by means of an Euler forward
difference method. since in this case the inelastic strain increment depends only on the state
of the grain at the beginning of the increment. However, if a backward difference or other
implicit integration method is used (including forward difference subincrementing), then
the inclastic strain increment will depend on the total strain increment, and the integral
equation in the Appendix results in an iterative procedure for the determination of the
inelastic strain increment in the grain.

K. MODEL PREDICTIONS AND EXPERIMENTAL RESULTS

To verify the self-consistent formulations derived in the preceding section, critical
verification experiments were conducted on the polycrystal version of Hastelloy-X and the
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Fig. 4. Axial response of a biaxial test (4 = 1.0) for polycrystailine Haslclloy-x at 982°C.
(a) Prediction of the self-consistent model. (b) Polycrystalline experimental results.



Modeling and testing of polycrystalline Hastelloy-X 2633

ta) COMPUTED RESULTS

70.0 ' r ]
= 1 10835 7
g »of [ ] .
< L l 1064 E
a - 10855
g ool y 3
P L b
[7,]
g A 7 ]
4 s ] .
(7] " :

700 i PURIPUEUNES WIS S SIS NOR TS YT SRS N U S

Q.010 -0.005 0.000 0.005 Q.00
SHEAR STRAIN

(e} EXPERIMENTAL RESULTS

70.0 o T . .
= 1 a
o H 108387
2 30 L f10E< s
A s 10658 1
t&j b
£ oot -
m 3
z 7
9 ol —/ i
177 3 -

‘70_°.L.LL1AA P T IO PO ]

-0.010 <0.005 0.000 0.c05 ¢.010

SHEAR STRAIN
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(a) Prediction of the self-consistent model. (b) Polycrystalline experimental results,

test results were compared with the model predictions. Figure 2 shows the comparison of
model prediction and experimental data under tension-compression cyclic loading with a
strain range of +0.67% and strain rates of 107°, 10 * and 107 % s~ " at 982"C. Figure 3
shows the comparison of the self-consistent model prediction and experimental data under
pure torsional cyclic loading with a strain range of +1.0% and strain rates of 1073, 10~*
and 1073 s "at 982°C.

Comparisons of the model predictions and experimental results under biaxial loading
at 982°C are shown in Figs 4-7. In Figs 4 and 5 the ratio of the torsional strain range to
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Fig. 8. Comparison of the self-consistent and experimental hysteresis loops of a4 uniaxtal tension-
compression strain rate dip test for polycrystalline Hastelloy-X at 982°'C with a strain range of
+0.67% under the constant strain rates 2% [0~ s~ ' fromatohand I x 10"*s~' from b to ctoa.
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Fig. 9. Comparison of the self-consistent and experimental hysteresis loops of a pure torsional strain
rate dip test for polycrystalline Hastelloy-X at 982°C with a strain range of 1 1.00% under the
constant strain rates 2x 10~ 's~' fromatoband | x 10~ *s~' from b to c to a.

the axial strain range, 4, ts equal to one, whilst 4 = 1.5 for the biaxial loading in Figs 6 and
7. It is noted that in torsion both the predictions and the experiments indicate a stress
overshoot which diminishes with decreasing strain rate.

Figure 8 shows the comparison of the model prediction and experimental result in a
uniaxial tension-compression strain rate dip test at 982"C in which the strain rate suddenly
increases by a factor of 20 for part of the cycle which was conducted with a strain range of
+0.67%. Figure 9 shows the comparison in a pure torsion strain rate dip test with a strain
rate ratio of 20 run at 982°C under a strain range of +1.0%. The comparison for the
relaxation tests conducted at two points on the loading and unloading branches of steady
state hysteresis loops are shown in Figs 10 and 11.

The predicted macroscopic response of the polycrystal has been calculated directly
from the single crystal model using the self-consistent method without any adjustable
parameters and fits the experimental data very well.

9. SUMMARY

A self-consistent model for polycrystal Hastelloy-X has been developed which uses a
unified viscoplastic constitutive single crystal formulation of the same material. The most
significant aspect of the results presented in this paper is that the experiments necessary to
determine the single crystal constants were carried out independently of the polycrystalline
verification experiments. As a result, the polycrystal response predictions were made without
any adjustable parameters and are true predictions. The excellent agreement between the
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Fig. 10. Stress relaxation behavior of polycrystalline Hastelloy-X at 982 C starting at a strain of
0.655% on the tensile unloading path of a stcady state hystcresis loop of a uniaxial tension-~
compression test with +0.67% strain range and 1.0 x 10~ * s~ ' strain rate.
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Fig. 11. Stress relaxation behavior of polycrystalline Hastelloy-X at 982 C starting at a strain of
—0.783% on the torsional loading path of a steady state hysteresis loop of a pure torsion test with
+1.00% strain range and 1.0 x 10~ s~ strain rate.

polycrystalline experiments and the calculations supports the ability of the self-consistent
model to predict the overall response of the polycrystalline aggregate for the small strain
viscoplastic experiments performed in this study. The present model provides a connection
between crystallographic microslip based models of single crystals and polycrystalline
metals for the case of coupled viscoplasticity.

The good agreement between the self-consistent calculations and the experimental tests
on the polycrystal samples should not be interpreted as applying in all cases. The quality
of the agreement would certainly be adversely affected by significant grain boundary sliding.
Harmony would also be disrupted if the elastic properties were more anisotropic or if there
were less slip systems active and the overall deformation in the crystalline grains were more
inthomogencous.
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APPENDIX
In Walker ¢t al. (1989, 1990, 1991) we have shown that the total strain increment Ae){r) inside an inclusion

{spherical crystal grain) embedded in an “infinite” matrix (polycrystal), upon which a uniform strain increment
Acy; is applied at “infinity”™, is determined by solving the integral equation

Agl{r) = AS&*-JA J‘J’ Ut =0} D, DL AL (0} — F( U D, () =D pnes)
¥
x [AeN(r) — AL (r' Ags (F)]} dV(r), (Al
where 3(r') = | if v is in the inclusion and J{r') = 0 if ¢ is in the matrix. The {ourth rank tensor Ui,.{r—1")

gives the kI component of the total strain increment at point r due to the mn component of a stress increment
applied at point ¢ in the infinite matrix witih elasticity tensor B,,,.. i€

Uipa (7 ~¥") = — {A2)

LG, (r—t) &G {t—1)
2 dx, 0x, ox, dx, ]
The volume integration in eqn (A1) extends over the volume ¥ of the spherical grain whose elasticity tensor is,
in general, given by D, (¢'), and over the “infinite matrix™ with volume Vy.

The Green's function tensor in the “infinite”™ matrix material is defined by the usuad isotropic relation

1 oAl xx,
) w428, STE s ST
Gy () $njir { Oy i+24 (O” rl )} (A3

where r = Je| = /x, x, is the magnitude of the vector r,

1t is known from Eshelby’s analysis (1957) that if’ the initial stress state inside the inclusion is homogencous,
the total strain increment inside the inclusion, Aef(r), will also be homogeneous when a uniform strain increment,
Acl, is applied to the matrix material. This can readily be seen from {Al). for if we replace Ae],(r') inside the
integral with & guess of Aefy, then the first Rayleigh-Born approximation to the solution of the integral equation
ts given by

Acl, = Aef) +J‘j‘j Ut (e = 1) AV (2) D, Atf (A5 + jjf Uil =) AV (') D 0, AL,
(A L€}

~[ ][], thmte =100 0 = Bt -5 a0

We have assumed that Ael,(r') = Aef,(Ag),) in the inclusion and that Aef{r') = AZL, in the matrix. In addition,
we have also assumed that the inelastic strain increment in the matrix is homogencous, even in the region
immediately outside the inclusion. The strain increments in eqn (A4) have been taken outside the integral
because in the Rayleigh-Born approximation they are homogeneous. The volume integral containing the tensor
Ui {t =1’} is known to be independent of £ if the field point r lies within the volume ¥ of the spherical inclusion
and hence the first Rayleigh-Born approximation for Ae], is constant within the inclusion. When this approximate
solution for AsJ; is rcinscrted as a new guess into the integral in eqn (A1), the next and all higher order Rayleigh-
Born approximations yicld solutions for Az, which are homogeneous within the inclusion. This being the case,
we may take the strain increments in eqn (A1) outside the integral and write the exact solution to the integral
equation as

A, = Al + SinBeh (AL} + j J‘ J; Uit =1 d¥(e") D, AET, ~ St D);\L(Du'u - auru)(Ae;‘: — Aef (AeL))

“

(A3)
where

St = J:[f Uipo (r =1 dV (') D (A6)
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is Eshelby’s tensor which is independent of r when the field point r lies in the spherical volume V5. The volume
integral over the matrix can be converted into a surface integral over the surface of the spherical inclusion and
over the surface of the matrix at “infinity”. Since the field point r is infinitely removed from the outer surface, the
outer surface integral over the matrix vanishes and we are left with the surface integral over the sphere. This can
be converted to a volume integral over the sphere and so we find that the volume integral in (A5) can be written
as

J J J‘ Cumlr =) AV () Do A2, = _.[ .[ ,f Uit (6 =F) V(€YD AET, = = Sy, AL, (A7)
V“ Vs

in which the minus sign enters because the unit normal over the spherical surface points inwards when the volume
integral over the matrix is converted to a surface integral. Equation (AS) may now be solved for A¢| to give

AL (N B ) = [Ln+ S0t D (D (1. B ) = D)) ™
X By + S (BEL 1. B2 Ael) — AEE) + St D it Doy (0. B. &) = Do, VAEL (0, B. ¢ 2 Ael) ). (AB)

where explicit notice has been taken of the dependence of the spherical grain tensors on the Euler angles (n. f. ¢)
between the crystallographic axes of the grain and the global axes.

When an explicit forward difference method is used to compute the inelastic strain increment in the crystalline
grain, the dependence of Ael(n. . ¢ Ae,,) on Ael, can be dropped and an explicit relation for the total strain
increment in the grain is obtained. However, for implicit integration methods, eqn (A8) must be solved iteratively.



